HylA, an alternative hydrolase for initiation of catabolism of the phenylurea herbicide linuron in Variovorax sp. strains.

نویسندگان

  • K Bers
  • I Batisson
  • P Proost
  • R Wattiez
  • R De Mot
  • D Springael
چکیده

Variovorax sp. strain WDL1, which mineralizes the phenylurea herbicide linuron, expresses a novel linuron-hydrolyzing enzyme, HylA, that converts linuron to 3,4-dichloroaniline (DCA). The enzyme is distinct from the linuron hydrolase LibA enzyme recently identified in other linuron-mineralizing Variovorax strains and from phenylurea-hydrolyzing enzymes (PuhA, PuhB) found in Gram-positive bacteria. The dimeric enzyme belongs to a separate family of hydrolases and differs in Km, temperature optimum, and phenylurea herbicide substrate range. Within the metal-dependent amidohydrolase superfamily, HylA and PuhA/PuhB belong to two distinct protein families, while LibA is a member of the unrelated amidase signature family. The hylA gene was identified in a draft genome sequence of strain WDL1. The involvement of hylA in linuron degradation by strain WDL1 is inferred from its absence in spontaneous WDL1 mutants defective in linuron hydrolysis and its presence in linuron-degrading Variovorax strains that lack libA. In strain WDL1, the hylA gene is combined with catabolic gene modules encoding the downstream pathways for DCA degradation, which are very similar to those present in Variovorax sp. SRS16, which contains libA. Our results show that the expansion of a DCA catabolic pathway toward linuron degradation in Variovorax can involve different but isofunctional linuron hydrolysis genes encoding proteins that belong to evolutionary unrelated hydrolase families. This may be explained by divergent evolution and the independent acquisition of the corresponding genetic modules.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rapid mineralization of the phenylurea herbicide diuron by Variovorax sp. strain SRS16 in pure culture and within a two-member consortium.

The phenylurea herbicide diuron [N-(3,4-dichlorophenyl)-N,N-dimethylurea] is widely used in a broad range of herbicide formulations, and consequently, it is frequently detected as a major water contaminant in areas where there is extensive use. We constructed a linuron [N-(3,4-dichlorophenyl)-N-methoxy-N-methylurea]- and diuron-mineralizing two-member consortium by combining the cooperative deg...

متن کامل

Enhanced mineralization of diuron using a cyclodextrin-based bioremediation technology.

The phenylurea herbicide diuron [N-(3,4-dichlorophenyl)-N,N-dimethylurea] is widely used in a broad range of herbicide formulations and, consequently, it is frequently detected as a major soil and water contaminant in areas where there is extensive use. Diuron has the unfortunate combination of being strongly adsorbed by soil organic matter particles and, hence, slowly degraded in the environme...

متن کامل

Synergistic degradation of linuron by a bacterial consortium and isolation of a single linuron-degrading variovorax strain.

The bacterial community composition of a linuron-degrading enrichment culture and the role of the individual strains in linuron degradation have been determined by a combination of methods, such as denaturing gradient gel electrophoresis of the total 16S rRNA gene pool, isolation and identification of strains, and biodegradation assays. Three strains, Variovorax sp. strain WDL1, Delftia acidovo...

متن کامل

Isolation from agricultural soil and characterization of a Sphingomonas sp. able to mineralize the phenylurea herbicide isoproturon.

A soil bacterium (designated strain SRS2) able to metabolize the phenylurea herbicide isoproturon, 3-(4-isopropylphenyl)-1,1-dimethylurea (IPU), was isolated from a previously IPU-treated agricultural soil. Based on a partial analysis of the 16S rRNA gene and the cellular fatty acids, the strain was identified as a Sphingomonas sp. within the alpha-subdivision of the proteobacteria. Strain SRS2...

متن کامل

Expression of a soybean cytochrome P450 monooxygenase cDNA in yeast and tobacco enhances the metabolism of phenylurea herbicides.

A strategy based on the random isolation and screening of soybean cDNAs encoding cytochrome P450 monooxygenases (P450s) was used in an attempt to identify P450 isozymes involved in herbicide metabolism. Nine full-length (or near-full-length) P450 cDNAs representing eight distinct P450 families were isolated by using PCR-based technologies. Five of the soybean P450 cDNAs were expressed successfu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 79 17  شماره 

صفحات  -

تاریخ انتشار 2013